

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/chat/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/chat/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Socket.IO

Socket.IO is a Node.JS project that makes WebSockets and realtime possible in
all browsers. It also enhances WebSockets by providing built-in multiplexing,
horizontal scalability, automatic JSON encoding/decoding, and more.

How to Install

npm install socket.io

How to use

First, require socket.io:

var io = require('socket.io');

Next, attach it to a HTTP/HTTPS server. If you’re using the fantastic express
web framework:

Express 3.x

var app = express()
 , server = require('http').createServer(app)
 , io = io.listen(server);

server.listen(80);

io.sockets.on('connection', function (socket) {
 socket.emit('news', { hello: 'world' });
 socket.on('my other event', function (data) {
 console.log(data);
 });
});

Express 2.x

var app = express.createServer()
 , io = io.listen(app);

app.listen(80);

io.sockets.on('connection', function (socket) {
 socket.emit('news', { hello: 'world' });
 socket.on('my other event', function (data) {
 console.log(data);
 });
});

Finally, load it from the client side code:

<script src="/socket.io/socket.io.js"></script>
<script>
 var socket = io.connect('http://localhost');
 socket.on('news', function (data) {
 console.log(data);
 socket.emit('my other event', { my: 'data' });
 });
</script>

For more thorough examples, look at the examples/ directory.

Short recipes

Sending and receiving events.

Socket.IO allows you to emit and receive custom events.
Besides connect, message and disconnect, you can emit custom events:

// note, io.listen(<port>) will create a http server for you
var io = require('socket.io').listen(80);

io.sockets.on('connection', function (socket) {
 io.sockets.emit('this', { will: 'be received by everyone' });

 socket.on('private message', function (from, msg) {
 console.log('I received a private message by ', from, ' saying ', msg);
 });

 socket.on('disconnect', function () {
 io.sockets.emit('user disconnected');
 });
});

Storing data associated to a client

Sometimes it’s necessary to store data associated with a client that’s
necessary for the duration of the session.

Server side

var io = require('socket.io').listen(80);

io.sockets.on('connection', function (socket) {
 socket.on('set nickname', function (name) {
 socket.set('nickname', name, function () { socket.emit('ready'); });
 });

 socket.on('msg', function () {
 socket.get('nickname', function (err, name) {
 console.log('Chat message by ', name);
 });
 });
});

Client side

<script>
 var socket = io.connect('http://localhost');

 socket.on('connect', function () {
 socket.emit('set nickname', prompt('What is your nickname?'));
 socket.on('ready', function () {
 console.log('Connected !');
 socket.emit('msg', prompt('What is your message?'));
 });
 });
</script>

Restricting yourself to a namespace

If you have control over all the messages and events emitted for a particular
application, using the default / namespace works.

If you want to leverage 3rd-party code, or produce code to share with others,
socket.io provides a way of namespacing a socket.

This has the benefit of multiplexing a single connection. Instead of
socket.io using two WebSocket connections, it’ll use one.

The following example defines a socket that listens on ‘/chat’ and one for
‘/news’:

Server side

var io = require('socket.io').listen(80);

var chat = io
 .of('/chat')
 .on('connection', function (socket) {
 socket.emit('a message', { that: 'only', '/chat': 'will get' });
 chat.emit('a message', { everyone: 'in', '/chat': 'will get' });
 });

var news = io
 .of('/news');
 .on('connection', function (socket) {
 socket.emit('item', { news: 'item' });
 });

Client side:

<script>
 var chat = io.connect('http://localhost/chat')
 , news = io.connect('http://localhost/news');

 chat.on('connect', function () {
 chat.emit('hi!');
 });

 news.on('news', function () {
 news.emit('woot');
 });
</script>

Sending volatile messages.

Sometimes certain messages can be dropped. Let’s say you have an app that
shows realtime tweets for the keyword bieber.

If a certain client is not ready to receive messages (because of network slowness
or other issues, or because he’s connected through long polling and is in the
middle of a request-response cycle), if he doesn’t receive ALL the tweets related
to bieber your application won’t suffer.

In that case, you might want to send those messages as volatile messages.

Server side

var io = require('socket.io').listen(80);

io.sockets.on('connection', function (socket) {
 var tweets = setInterval(function () {
 getBieberTweet(function (tweet) {
 socket.volatile.emit('bieber tweet', tweet);
 });
 }, 100);

 socket.on('disconnect', function () {
 clearInterval(tweets);
 });
});

Client side

In the client side, messages are received the same way whether they’re volatile
or not.

Getting acknowledgements

Sometimes, you might want to get a callback when the client confirmed the message
reception.

To do this, simply pass a function as the last parameter of .send or .emit.
What’s more, when you use .emit, the acknowledgement is done by you, which
means you can also pass data along:

Server side

var io = require('socket.io').listen(80);

io.sockets.on('connection', function (socket) {
 socket.on('ferret', function (name, fn) {
 fn('woot');
 });
});

Client side

<script>
 var socket = io.connect(); // TIP: .connect with no args does auto-discovery
 socket.on('connect', function () { // TIP: you can avoid listening on `connect` and listen on events directly too!
 socket.emit('ferret', 'tobi', function (data) {
 console.log(data); // data will be 'woot'
 });
 });
</script>

Broadcasting messages

To broadcast, simply add a broadcast flag to emit and send method calls.
Broadcasting means sending a message to everyone else except for the socket
that starts it.

Server side

var io = require('socket.io').listen(80);

io.sockets.on('connection', function (socket) {
 socket.broadcast.emit('user connected');
 socket.broadcast.json.send({ a: 'message' });
});

Rooms

Sometimes you want to put certain sockets in the same room, so that it’s easy
to broadcast to all of them together.

Think of this as built-in channels for sockets. Sockets join and leave
rooms in each socket.

Server side

var io = require('socket.io').listen(80);

io.sockets.on('connection', function (socket) {
 socket.join('justin bieber fans');
 socket.broadcast.to('justin bieber fans').emit('new fan');
 io.sockets.in('rammstein fans').emit('new non-fan');
});

Using it just as a cross-browser WebSocket

If you just want the WebSocket semantics, you can do that too.
Simply leverage send and listen on the message event:

Server side

var io = require('socket.io').listen(80);

io.sockets.on('connection', function (socket) {
 socket.on('message', function () { });
 socket.on('disconnect', function () { });
});

Client side

<script>
 var socket = io.connect('http://localhost/');
 socket.on('connect', function () {
 socket.send('hi');

 socket.on('message', function (msg) {
 // my msg
 });
 });
</script>

Changing configuration

Configuration in socket.io is TJ-style:

Server side

var io = require('socket.io').listen(80);

io.configure(function () {
 io.set('transports', ['websocket', 'flashsocket', 'xhr-polling']);
});

io.configure('development', function () {
 io.set('transports', ['websocket', 'xhr-polling']);
 io.enable('log');
});

License

(The MIT License)

Copyright (c) 2011 Guillermo Rauch <

guillermo@learnboost.com>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

0.9.14 / 2013-03-29

	manager: fix memory leak with SSL [jpallen]

0.9.13 / 2012-12-13

	package: fixed base64id requirement

0.9.12 / 2012-12-13

	manager: fix for latest node which is returning a clone with listeners [viirya]

0.9.11 / 2012-11-02

	package: move redis to optionalDependenices [3rd-Eden]

	bumped client

0.9.10 / 2012-08-10

	Don’t lowercase log messages

	Always set the HTTP response in case an error should be returned to the client

	Create or destroy the flash policy server on configuration change

	Honour configuration to disable flash policy server

	Add express 3.0 instructions on Readme.md

	Bump client

0.9.9 / 2012-08-01

	Fixed sync disconnect xhrs handling

	Put license text in its own file (#965)

	Add warning to .listen() to ease the migration to Express 3.x

	Restored compatibility with node 0.4.x

0.9.8 / 2012-07-24

	Bumped client.

0.9.7 / 2012-07-24

	Prevent crash when socket leaves a room twice.

	Corrects unsafe usage of for..in

	Fix for node 0.8 with gzip compression [vadimi]

	Update redis to support Node 0.8.x

	Made ID generation securely random

	Fix Redis Store race condition in manager onOpen unsubscribe callback

	Fix for EventEmitters always reusing the same Array instance for listeners

0.9.6 / 2012-04-17

	Fixed XSS in jsonp-polling.

0.9.5 / 2012-04-05

	Added test for polling and socket close.

	Ensure close upon request close.

	Fix disconnection reason being lost for polling transports.

	Ensure that polling transports work with Connection: close.

	Log disconnection reason.

0.9.4 / 2012-04-01

	Disconnecting from namespace improvement (#795) [DanielBaulig]

	Bumped client with polling reconnection loop (#438)

0.9.3 / 2012-03-28

	Fix “Syntax error” on FF Web Console with XHR Polling [mikito]

0.9.2 / 2012-03-13

	More sensible close timeout default (fixes disconnect issue)

0.9.1-1 / 2012-03-02

	Bumped client with NPM dependency fix.

0.9.1 / 2012-03-02

	Changed heartbeat timeout and interval defaults (60 and 25 seconds)

	Make tests work both on 0.4 and 0.6

	Updated client (improvements + bug fixes).

0.9.0 / 2012-02-26

	Make it possible to use a regexp to match the socket.io resource URL.
We need this because we have to prefix the socket.io URL with a variable ID.

	Supplemental fix to gavinuhma/authfix, it looks like the same Access-Control-Origin logic is needed in the http and xhr-polling transports

	Updated express dep for windows compatibility.

	Combine two substr calls into one in decodePayload to improve performance

	Minor documentation fix

	Minor. Conform to style of other files.

	Switching setting to ‘match origin protocol’

	Revert “Fixes leaking Redis subscriptions for #663. The local flag was not getting passed through onClientDisconnect().”

	Revert “Handle leaked dispatch:[id] subscription.”

	Merge pull request #667 from dshaw/patch/redis-disconnect

	Handle leaked dispatch:[id] subscription.

	Fixes leaking Redis subscriptions for #663. The local flag was not getting passed through onClientDisconnect().

	Prevent memory leaking on uncompleted requests & add max post size limitation

	Fix for testcase

	Set Access-Control-Allow-Credentials true, regardless of cookie

	Remove assertvarnish from package as it breaks on 0.6

	Correct irc channel

	Added proper return after reserved field error

	Fixes manager.js failure to close connection after transport error has happened

	Added implicit port 80 for origin checks. fixes #638

	Fixed bug #432 in 0.8.7

	Set Access-Control-Allow-Origin header to origin to enable withCredentials

	Adding configuration variable matchOriginProtocol

	Fixes location mismatch error in Safari.

	Use tty to detect if we should add colors or not by default.

	Updated the package location.

0.8.7 / 2011-11-05

	Fixed memory leaks in closed clients.

	Fixed memory leaks in namespaces.

	Fixed websocket handling for malformed requests from proxies. [einaros]

	Node 0.6 compatibility. [einaros] [3rd-Eden]

	Adapted tests and examples.

0.8.6 / 2011-10-27

	Added JSON decoding on jsonp-polling transport.

	Fixed README example.

	Major speed optimizations [3rd-Eden] [einaros] [visionmedia]

	Added decode/encode benchmarks [visionmedia]

	Added support for black-listing client sent events.

	Fixed logging options, closes #540 [3rd-Eden]

	Added vary header for gzip [3rd-Eden]

	Properly cleaned up async websocket / flashsocket tests, after patching node-websocket-client

	Patched to properly shut down when a finishClose call is made during connection establishment

	Added support for socket.io version on url and far-future Expires [3rd-Eden] [getify]

	Began IE10 compatibility [einaros] [tbranyen]

	Misc WebSocket fixes [einaros]

	Added UTF8 to respone headers for htmlfile [3rd-Eden]

0.8.5 / 2011-10-07

	Added websocket draft HyBi-16 support. [einaros]

	Fixed websocket continuation bugs. [einaros]

	Fixed flashsocket transport name.

	Fixed websocket tests.

	Ensured parser#decodePayload doesn’t choke.

	Added http referrer verification to manager verifyOrigin.

	Added access control for cross domain xhr handshakes [3rd-Eden]

	Added support for automatic generation of socket.io files [3rd-Eden]

	Added websocket binary support [einaros]

	Added gzip support for socket.io.js [3rd-Eden]

	Expose socket.transport [3rd-Eden]

	Updated client.

0.8.4 / 2011-09-06

	Client build

0.8.3 / 2011-09-03

	Fixed \n parsing for non-JSON packets (fixes #479).

	Fixed parsing of certain unicode characters (fixes #451).

	Fixed transport message packet logging.

	Fixed emission of error event resulting in an uncaught exception if unhandled (fixes #476).

	Fixed; allow for falsy values as the configuration value of log level (fixes #491).

	Fixed repository URI in package.json. Fixes #504.

	Added text/plain content-type to handshake responses [einaros]

	Improved single byte writes [einaros]

	Updated socket.io-flashsocket default port from 843 to 10843 [3rd-Eden]

	Updated client.

0.8.2 / 2011-08-29

	Updated client.

0.8.1 / 2011-08-29

	Fixed utf8 bug in send framing in websocket [einaros]

	Fixed typo in docs [Znarkus]

	Fixed bug in send framing for over 64kB of data in websocket [einaros]

	Corrected ping handling in websocket transport [einaros]

0.8.0 / 2011-08-28

	Updated to work with two-level websocket versioning. [einaros]

	Added hybi07 support. [einaros]

	Added hybi10 support. [einaros]

	Added http referrer verification to manager.js verifyOrigin. [einaors]

0.7.11 / 2011-08-27

	Updated socket.io-client.

0.7.10 / 2011-08-27

	Updated socket.io-client.

0.7.9 / 2011-08-12

	Updated socket.io-client.

	Make sure we only do garbage collection when the server we receive is actually run.

0.7.8 / 2011-08-08

	Changed; make sure sio#listen passes options to both HTTP server and socket.io manager.

	Added docs for sio#listen.

	Added options parameter support for Manager constructor.

	Added memory leaks tests and test-leaks Makefile task.

	Removed auto npm-linking from make test.

	Make sure that you can disable heartbeats. [3rd-Eden]

	Fixed rooms memory leak [3rd-Eden]

	Send response once we got all POST data, not immediately [Pita]

	Fixed onLeave behavior with missing clientsk [3rd-Eden]

	Prevent duplicate references in rooms.

	Added alias for to to in and in to to.

	Fixed roomClients definition.

	Removed dependency on redis for installation without npm [3rd-Eden]

	Expose path and querystring in handshakeData [3rd-Eden]

0.7.7 / 2011-07-12

	Fixed double dispatch handling with emit to closed clients.

	Added test for emitting to closed clients to prevent regression.

	Fixed race condition in redis test.

	Changed Transport#end instrumentation.

	Leveraged $emit instead of emit internally.

	Made tests faster.

	Fixed double disconnect events.

	Fixed disconnect logic

	Simplified remote events handling in Socket.

	Increased testcase timeout.

	Fixed unknown room emitting (GH-291). [3rd-Eden]

	Fixed address in handshakeData. [3rd-Eden]

	Removed transports definition in chat example.

	Fixed room cleanup

	Fixed; make sure the client is cleaned up after booting.

	Make sure to mark the client as non-open if the connection is closed.

	Removed unneeded buffer declarations.

	Fixed; make sure to clear socket handlers and subscriptions upon transport close.

0.7.6 / 2011-06-30

	Fixed general dispatching when a client has closed.

0.7.5 / 2011-06-30

	Fixed dispatching to clients that are disconnected.

0.7.4 / 2011-06-30

	Fixed; only clear handlers if they were set. [level09]

0.7.3 / 2011-06-30

	Exposed handshake data to clients.

	Refactored dispatcher interface.

	Changed; Moved id generation method into the manager.

	Added sub-namespace authorization. [3rd-Eden]

	Changed; normalized SocketNamespace local eventing [dvv]

	Changed; Use packet.reason or default to ‘packet’ [3rd-Eden]

	Changed console.error to console.log.

	Fixed; bind both servers at the same time do that the test never times out.

	Added 304 support.

	Removed Transport#name for abstract interface.

	Changed; lazily require http and https module only when needed. [3rd-Eden]

0.7.2 / 2011-06-22

	Make sure to write a packet (of type noop) when closing a poll.
This solves a problem with cross-domain requests being flagged as aborted and
reconnection being triggered.

	Added noop message type.

0.7.1 / 2011-06-21

	Fixed cross-domain XHR.

	Added CORS test to xhr-polling suite.

0.7.0 / 2010-06-21

	http://socket.io/announcement.html

LOL, WUT?

It basically allows you to allow or disallow Flash Player sockets from accessing your site.

Installation

npm install policyfile

Usage

The server is based on the regular and know net and http server patterns. So it you can just listen
for all the events that a net based server emits etc. But there is one extra event, the connect_failed
event. This event is triggered when we are unable to listen on the supplied port number.

createServer

Creates a new server instance and accepts 2 optional arguments:

	options Object Options to configure the server instance
	log Boolean Enable logging to STDOUT and STDERR (defaults to true)

	origins Array An Array of origins that are allowed by the server (defaults to :)

var pf = require('policyfile');
pf.createServer();
pf.listen();

server.listen

Start listening on the server and it takes 3 optional arguments

	port Number On which port number should we listen? (defaults to 843, which is the first port number the FlashPlayer checks)

	server Server A http server, if we are unable to accept requests or run the server we can also answer the policy requests inline over the supplied HTTP server.

	callback Function A callback function that is called when listening to the server was successful.

var pf = require('policyfile');
pf.createServer();
pf.listen(1337, function(){
 console.log(':3 yay')
});

Changing port numbers can be handy if you do not want to run your server as root and have port 843 forward to a non root port number (aka a number above 1024).

var pf = require('policyfile')
 , http = require('http');

server = http.createServer(function(q,r){r.writeHead(200);r.end('hello world')});
server.listen(80);

pf.createServer();
pf.listen(1337, server, function(){
 console.log(':3 yay')
});

Support for serving inline requests over a existing HTTP connection as the FlashPlayer will first check port 843, but if it’s unable to get a response there it will send a policy file request over port 80, which is usually your http server.

server.add

Adds more origins to the policy file you can add as many arguments as you like.

var pf = require('policyfile');
pf.createServer(['google.com:80']);
pf.listen();
pf.add('blog.3rd-Eden.com:80', 'blog.3rd-Eden.com:8080'); // now has 3 origins

server.add

Adds more origins to the policy file you can add as many arguments as you like.

var pf = require('policyfile');
pf.createServer(['blog.3rd-Eden.com:80', 'blog.3rd-Eden.com:8080']);
pf.listen();
pf.remove('blog.3rd-Eden.com:8080'); // only contains the :80 version now

server.close

Shuts down the server

var pf = require('policyfile');
pf.createServer();
pf.listen();
pf.close(); // OH NVM.

API

http://3rd-eden.com/FlashPolicyFileServer/

Examples

See https://github.com/3rd-Eden/FlashPolicyFileServer/tree/master/examples for examples

Licence

MIT see LICENSE file in the repository

redis - a node.js redis client

This is a complete Redis client for node.js. It supports all Redis commands, including many recently added commands like EVAL from
experimental Redis server branches.

Install with:

npm install redis

Pieter Noordhuis has provided a binding to the official hiredis C library, which is non-blocking and fast. To use hiredis, do:

npm install hiredis redis

If hiredis is installed, node_redis will use it by default. Otherwise, a pure JavaScript parser will be used.

If you use hiredis, be sure to rebuild it whenever you upgrade your version of node. There are mysterious failures that can
happen between node and native code modules after a node upgrade.

Usage

Simple example, included as examples/simple.js:

 var redis = require("redis"),
 client = redis.createClient();

 // if you'd like to select database 3, instead of 0 (default), call
 // client.select(3, function() { /* ... */ });

 client.on("error", function (err) {
 console.log("Error " + err);
 });

 client.set("string key", "string val", redis.print);
 client.hset("hash key", "hashtest 1", "some value", redis.print);
 client.hset(["hash key", "hashtest 2", "some other value"], redis.print);
 client.hkeys("hash key", function (err, replies) {
 console.log(replies.length + " replies:");
 replies.forEach(function (reply, i) {
 console.log(" " + i + ": " + reply);
 });
 client.quit();
 });

This will display:

mjr:~/work/node_redis (master)$ node example.js
Reply: OK
Reply: 0
Reply: 0
2 replies:
 0: hashtest 1
 1: hashtest 2
mjr:~/work/node_redis (master)$

Performance

Here are typical results of multi_bench.js which is similar to redis-benchmark from the Redis distribution.
It uses 50 concurrent connections with no pipelining.

JavaScript parser:

PING: 20000 ops 42283.30 ops/sec 0/5/1.182
SET: 20000 ops 32948.93 ops/sec 1/7/1.515
GET: 20000 ops 28694.40 ops/sec 0/9/1.740
INCR: 20000 ops 39370.08 ops/sec 0/8/1.269
LPUSH: 20000 ops 36429.87 ops/sec 0/8/1.370
LRANGE (10 elements): 20000 ops 9891.20 ops/sec 1/9/5.048
LRANGE (100 elements): 20000 ops 1384.56 ops/sec 10/91/36.072

hiredis parser:

PING: 20000 ops 46189.38 ops/sec 1/4/1.082
SET: 20000 ops 41237.11 ops/sec 0/6/1.210
GET: 20000 ops 39682.54 ops/sec 1/7/1.257
INCR: 20000 ops 40080.16 ops/sec 0/8/1.242
LPUSH: 20000 ops 41152.26 ops/sec 0/3/1.212
LRANGE (10 elements): 20000 ops 36563.07 ops/sec 1/8/1.363
LRANGE (100 elements): 20000 ops 21834.06 ops/sec 0/9/2.287

The performance of node_redis improves dramatically with pipelining, which happens automatically in most normal programs.

Sending Commands

Each Redis command is exposed as a function on the client object.
All functions take either an args Array plus optional callback Function or
a variable number of individual arguments followed by an optional callback.
Here is an example of passing an array of arguments and a callback:

client.mset(["test keys 1", "test val 1", "test keys 2", "test val 2"], function (err, res) {});

Here is that same call in the second style:

client.mset("test keys 1", "test val 1", "test keys 2", "test val 2", function (err, res) {});

Note that in either form the callback is optional:

client.set("some key", "some val");
client.set(["some other key", "some val"]);

If the key is missing, reply will be null (probably):

client.get("missingkey", function(err, reply) {
 // reply is null when the key is missing
 console.log(reply);
});

For a list of Redis commands, see Redis Command Reference [http://redis.io/commands]

The commands can be specified in uppercase or lowercase for convenience. client.get() is the same as client.GET().

Minimal parsing is done on the replies. Commands that return a single line reply return JavaScript Strings,
integer replies return JavaScript Numbers, “bulk” replies return node Buffers, and “multi bulk” replies return a
JavaScript Array of node Buffers. HGETALL returns an Object with Buffers keyed by the hash keys.

API

Connection Events

client will emit some events about the state of the connection to the Redis server.

“ready”

client will emit ready a connection is established to the Redis server and the server reports
that it is ready to receive commands. Commands issued before the ready event are queued,
then replayed just before this event is emitted.

“connect”

client will emit connect at the same time as it emits ready unless client.options.no_ready_check
is set. If this options is set, connect will be emitted when the stream is connected, and then
you are free to try to send commands.

“error”

client will emit error when encountering an error connecting to the Redis server.

Note that “error” is a special event type in node. If there are no listeners for an
“error” event, node will exit. This is usually what you want, but it can lead to some
cryptic error messages like this:

mjr:~/work/node_redis (master)$ node example.js

node.js:50
 throw e;
 ^
Error: ECONNREFUSED, Connection refused
 at IOWatcher.callback (net:870:22)
 at node.js:607:9

Not very useful in diagnosing the problem, but if your program isn’t ready to handle this,
it is probably the right thing to just exit.

client will also emit error if an exception is thrown inside of node_redis for whatever reason.
It would be nice to distinguish these two cases.

“end”

client will emit end when an established Redis server connection has closed.

“drain”

client will emit drain when the TCP connection to the Redis server has been buffering, but is now
writable. This event can be used to stream commands in to Redis and adapt to backpressure. Right now,
you need to check client.command_queue.length to decide when to reduce your send rate. Then you can
resume sending when you get drain.

“idle”

client will emit idle when there are no outstanding commands that are awaiting a response.

redis.createClient(port, host, options)

Create a new client connection. port defaults to 6379 and host defaults
to 127.0.0.1. If you have redis-server running on the same computer as node, then the defaults for
port and host are probably fine. options in an object with the following possible properties:

	parser: which Redis protocol reply parser to use. Defaults to hiredis if that module is installed.
This may also be set to javascript.

	return_buffers: defaults to false. If set to true, then all replies will be sent to callbacks as node Buffer
objects instead of JavaScript Strings.

	detect_buffers: default to false. If set to true, then replies will be sent to callbacks as node Buffer objects
if any of the input arguments to the original command were Buffer objects.
This option lets you switch between Buffers and Strings on a per-command basis, whereas return_buffers applies to
every command on a client.

	socket_nodelay: defaults to true. Whether to call setNoDelay() on the TCP stream, which disables the
Nagle algorithm on the underlying socket. Setting this option to false can result in additional throughput at the
cost of more latency. Most applications will want this set to true.

	no_ready_check: defaults to false. When a connection is established to the Redis server, the server might still
be loading the database from disk. While loading, the server not respond to any commands. To work around this,
node_redis has a “ready check” which sends the INFO command to the server. The response from the INFO command
indicates whether the server is ready for more commands. When ready, node_redis emits a ready event.
Setting no_ready_check to true will inhibit this check.

	enable_offline_queue: defaults to true. By default, if there is no active
connection to the redis server, commands are added to a queue and are executed
once the connection has been established. Setting enable_offline_queue to
false will disable this feature and the callback will be execute immediately
with an error, or an error will be thrown if no callback is specified.

 var redis = require("redis"),
 client = redis.createClient(null, null, {detect_buffers: true});

 client.set("foo_rand000000000000", "OK");

 // This will return a JavaScript String
 client.get("foo_rand000000000000", function (err, reply) {
 console.log(reply.toString()); // Will print `OK`
 });

 // This will return a Buffer since original key is specified as a Buffer
 client.get(new Buffer("foo_rand000000000000"), function (err, reply) {
 console.log(reply.toString()); // Will print `<Buffer 4f 4b>`
 });
 client.end();

createClient() returns a RedisClient object that is named client in all of the examples here.

client.auth(password, callback)

When connecting to Redis servers that require authentication, the AUTH command must be sent as the
first command after connecting. This can be tricky to coordinate with reconnections, the ready check,
etc. To make this easier, client.auth() stashes password and will send it after each connection,
including reconnections. callback is invoked only once, after the response to the very first
AUTH command sent.
NOTE: Your call to client.auth() should not be inside the ready handler. If
you are doing this wrong, client will emit an error that looks
something like this Error: Ready check failed: ERR operation not permitted.

client.end()

Forcibly close the connection to the Redis server. Note that this does not wait until all replies have been parsed.
If you want to exit cleanly, call client.quit() to send the QUIT command after you have handled all replies.

This example closes the connection to the Redis server before the replies have been read. You probably don’t
want to do this:

 var redis = require("redis"),
 client = redis.createClient();

 client.set("foo_rand000000000000", "some fantastic value");
 client.get("foo_rand000000000000", function (err, reply) {
 console.log(reply.toString());
 });
 client.end();

client.end() is useful for timeout cases where something is stuck or taking too long and you want
to start over.

Friendlier hash commands

Most Redis commands take a single String or an Array of Strings as arguments, and replies are sent back as a single String or an Array of Strings.
When dealing with hash values, there are a couple of useful exceptions to this.

client.hgetall(hash)

The reply from an HGETALL command will be converted into a JavaScript Object by node_redis. That way you can interact
with the responses using JavaScript syntax.

Example:

client.hmset("hosts", "mjr", "1", "another", "23", "home", "1234");
client.hgetall("hosts", function (err, obj) {
 console.dir(obj);
});

Output:

{ mjr: '1', another: '23', home: '1234' }

client.hmset(hash, obj, [callback])

Multiple values in a hash can be set by supplying an object:

client.HMSET(key2, {
 "0123456789": "abcdefghij", // NOTE: the key and value must both be strings
 "some manner of key": "a type of value"
});

The properties and values of this Object will be set as keys and values in the Redis hash.

client.hmset(hash, key1, val1, ... keyn, valn, [callback])

Multiple values may also be set by supplying a list:

client.HMSET(key1, "0123456789", "abcdefghij", "some manner of key", "a type of value");

Publish / Subscribe

Here is a simple example of the API for publish / subscribe. This program opens two
client connections, subscribes to a channel on one of them, and publishes to that
channel on the other:

 var redis = require("redis"),
 client1 = redis.createClient(), client2 = redis.createClient(),
 msg_count = 0;

 client1.on("subscribe", function (channel, count) {
 client2.publish("a nice channel", "I am sending a message.");
 client2.publish("a nice channel", "I am sending a second message.");
 client2.publish("a nice channel", "I am sending my last message.");
 });

 client1.on("message", function (channel, message) {
 console.log("client1 channel " + channel + ": " + message);
 msg_count += 1;
 if (msg_count === 3) {
 client1.unsubscribe();
 client1.end();
 client2.end();
 }
 });

 client1.incr("did a thing");
 client1.subscribe("a nice channel");

When a client issues a SUBSCRIBE or PSUBSCRIBE, that connection is put into “pub/sub” mode.
At that point, only commands that modify the subscription set are valid. When the subscription
set is empty, the connection is put back into regular mode.

If you need to send regular commands to Redis while in pub/sub mode, just open another connection.

Pub / Sub Events

If a client has subscriptions active, it may emit these events:

“message” (channel, message)

Client will emit message for every message received that matches an active subscription.
Listeners are passed the channel name as channel and the message Buffer as message.

“pmessage” (pattern, channel, message)

Client will emit pmessage for every message received that matches an active subscription pattern.
Listeners are passed the original pattern used with PSUBSCRIBE as pattern, the sending channel
name as channel, and the message Buffer as message.

“subscribe” (channel, count)

Client will emit subscribe in response to a SUBSCRIBE command. Listeners are passed the
channel name as channel and the new count of subscriptions for this client as count.

“psubscribe” (pattern, count)

Client will emit psubscribe in response to a PSUBSCRIBE command. Listeners are passed the
original pattern as pattern, and the new count of subscriptions for this client as count.

“unsubscribe” (channel, count)

Client will emit unsubscribe in response to a UNSUBSCRIBE command. Listeners are passed the
channel name as channel and the new count of subscriptions for this client as count. When
count is 0, this client has left pub/sub mode and no more pub/sub events will be emitted.

“punsubscribe” (pattern, count)

Client will emit punsubscribe in response to a PUNSUBSCRIBE command. Listeners are passed the
channel name as channel and the new count of subscriptions for this client as count. When
count is 0, this client has left pub/sub mode and no more pub/sub events will be emitted.

client.multi([commands])

MULTI commands are queued up until an EXEC is issued, and then all commands are run atomically by
Redis. The interface in node_redis is to return an individual Multi object by calling client.multi().

 var redis = require("./index"),
 client = redis.createClient(), set_size = 20;

 client.sadd("bigset", "a member");
 client.sadd("bigset", "another member");

 while (set_size > 0) {
 client.sadd("bigset", "member " + set_size);
 set_size -= 1;
 }

 // multi chain with an individual callback
 client.multi()
 .scard("bigset")
 .smembers("bigset")
 .keys("*", function (err, replies) {
 // NOTE: code in this callback is NOT atomic
 // this only happens after the the .exec call finishes.
 client.mget(replies, redis.print);
 })
 .dbsize()
 .exec(function (err, replies) {
 console.log("MULTI got " + replies.length + " replies");
 replies.forEach(function (reply, index) {
 console.log("Reply " + index + ": " + reply.toString());
 });
 });

client.multi() is a constructor that returns a Multi object. Multi objects share all of the
same command methods as client objects do. Commands are queued up inside the Multi object
until Multi.exec() is invoked.

You can either chain together MULTI commands as in the above example, or you can queue individual
commands while still sending regular client command as in this example:

 var redis = require("redis"),
 client = redis.createClient(), multi;

 // start a separate multi command queue
 multi = client.multi();
 multi.incr("incr thing", redis.print);
 multi.incr("incr other thing", redis.print);

 // runs immediately
 client.mset("incr thing", 100, "incr other thing", 1, redis.print);

 // drains multi queue and runs atomically
 multi.exec(function (err, replies) {
 console.log(replies); // 101, 2
 });

 // you can re-run the same transaction if you like
 multi.exec(function (err, replies) {
 console.log(replies); // 102, 3
 client.quit();
 });

In addition to adding commands to the MULTI queue individually, you can also pass an array
of commands and arguments to the constructor:

 var redis = require("redis"),
 client = redis.createClient(), multi;

 client.multi([
 ["mget", "multifoo", "multibar", redis.print],
 ["incr", "multifoo"],
 ["incr", "multibar"]
]).exec(function (err, replies) {
 console.log(replies);
 });

Monitor mode

Redis supports the MONITOR command, which lets you see all commands received by the Redis server
across all client connections, including from other client libraries and other computers.

After you send the MONITOR command, no other commands are valid on that connection. node_redis
will emit a monitor event for every new monitor message that comes across. The callback for the
monitor event takes a timestamp from the Redis server and an array of command arguments.

Here is a simple example:

 var client = require("redis").createClient(),
 util = require("util");

 client.monitor(function (err, res) {
 console.log("Entering monitoring mode.");
 });

 client.on("monitor", function (time, args) {
 console.log(time + ": " + util.inspect(args));
 });

Extras

Some other things you might like to know about.

client.server_info

After the ready probe completes, the results from the INFO command are saved in the client.server_info
object.

The versions key contains an array of the elements of the version string for easy comparison.

> client.server_info.redis_version
'2.3.0'
> client.server_info.versions
[2, 3, 0]

redis.print()

A handy callback function for displaying return values when testing. Example:

 var redis = require("redis"),
 client = redis.createClient();

 client.on("connect", function () {
 client.set("foo_rand000000000000", "some fantastic value", redis.print);
 client.get("foo_rand000000000000", redis.print);
 });

This will print:

Reply: OK
Reply: some fantastic value

Note that this program will not exit cleanly because the client is still connected.

redis.debug_mode

Boolean to enable debug mode and protocol tracing.

 var redis = require("redis"),
 client = redis.createClient();

 redis.debug_mode = true;

 client.on("connect", function () {
 client.set("foo_rand000000000000", "some fantastic value");
 });

This will display:

mjr:~/work/node_redis (master)$ node ~/example.js
send command: *3
$3
SET
$20
foo_rand000000000000
$20
some fantastic value

on_data: +OK

send command is data sent into Redis and on_data is data received from Redis.

client.send_command(command_name, args, callback)

Used internally to send commands to Redis. For convenience, nearly all commands that are published on the Redis
Wiki have been added to the client object. However, if I missed any, or if new commands are introduced before
this library is updated, you can use send_command() to send arbitrary commands to Redis.

All commands are sent as multi-bulk commands. args can either be an Array of arguments, or omitted.

client.connected

Boolean tracking the state of the connection to the Redis server.

client.command_queue.length

The number of commands that have been sent to the Redis server but not yet replied to. You can use this to
enforce some kind of maximum queue depth for commands while connected.

Don’t mess with client.command_queue though unless you really know what you are doing.

client.offline_queue.length

The number of commands that have been queued up for a future connection. You can use this to enforce
some kind of maximum queue depth for pre-connection commands.

client.retry_delay

Current delay in milliseconds before a connection retry will be attempted. This starts at 250.

client.retry_backoff

Multiplier for future retry timeouts. This should be larger than 1 to add more time between retries.
Defaults to 1.7. The default initial connection retry is 250, so the second retry will be 425, followed by 723.5, etc.

Commands with Optional and Keyword arguments

This applies to anything that uses an optional [WITHSCORES] or [LIMIT offset count] in the redis.io/commands [http://redis.io/commands] documentation.

Example:

var args = ['myzset', 1, 'one', 2, 'two', 3, 'three', 99, 'ninety-nine'];
client.zadd(args, function (err, response) {
 if (err) throw err;
 console.log('added '+response+' items.');

 // -Infinity and +Infinity also work
 var args1 = ['myzset', '+inf', '-inf'];
 client.zrevrangebyscore(args1, function (err, response) {
 if (err) throw err;
 console.log('example1', response);
 // write your code here
 });

 var max = 3, min = 1, offset = 1, count = 2;
 var args2 = ['myzset', max, min, 'WITHSCORES', 'LIMIT', offset, count];
 client.zrevrangebyscore(args2, function (err, response) {
 if (err) throw err;
 console.log('example2', response);
 // write your code here
 });
});

TODO

Better tests for auth, disconnect/reconnect, and all combinations thereof.

Stream large set/get values into and out of Redis. Otherwise the entire value must be in node’s memory.

Performance can be better for very large values.

I think there are more performance improvements left in there for smaller values, especially for large lists of small values.

How to Contribute

	open a pull request and then wait for feedback (if
DTrejo [http://github.com/dtrejo] does not get back to you within 2 days,
comment again with indignation!)

Contributors

Some people have have added features and fixed bugs in node_redis other than me.

Ordered by date of first contribution.
Auto-generated [http://github.com/dtrejo/node-authors] on Wed Jul 25 2012 19:14:59 GMT-0700 (PDT).

	Matt Ranney aka mranney [https://github.com/mranney]

	Tim-Smart aka tim-smart [https://github.com/tim-smart]

	Tj Holowaychuk aka visionmedia [https://github.com/visionmedia]

	rick aka technoweenie [https://github.com/technoweenie]

	Orion Henry aka orionz [https://github.com/orionz]

	Aivo Paas aka aivopaas [https://github.com/aivopaas]

	Hank Sims aka hanksims [https://github.com/hanksims]

	Paul Carey aka paulcarey [https://github.com/paulcarey]

	Pieter Noordhuis aka pietern [https://github.com/pietern]

	nithesh aka nithesh [https://github.com/nithesh]

	Andy Ray aka andy2ray [https://github.com/andy2ray]

	unknown aka unknowdna [https://github.com/unknowdna]

	Dave Hoover aka redsquirrel [https://github.com/redsquirrel]

	Vladimir Dronnikov aka dvv [https://github.com/dvv]

	Umair Siddique aka umairsiddique [https://github.com/umairsiddique]

	Louis-Philippe Perron aka lp [https://github.com/lp]

	Mark Dawson aka markdaws [https://github.com/markdaws]

	Ian Babrou aka bobrik [https://github.com/bobrik]

	Felix Geisendörfer aka felixge [https://github.com/felixge]

	Jean-Hugues Pinson aka undefined [https://github.com/undefined]

	Maksim Lin aka maks [https://github.com/maks]

	Owen Smith aka orls [https://github.com/orls]

	Zachary Scott aka zzak [https://github.com/zzak]

	TEHEK Firefox aka TEHEK [https://github.com/TEHEK]

	Isaac Z. Schlueter aka isaacs [https://github.com/isaacs]

	David Trejo aka DTrejo [https://github.com/DTrejo]

	Brian Noguchi aka bnoguchi [https://github.com/bnoguchi]

	Philip Tellis aka bluesmoon [https://github.com/bluesmoon]

	Marcus Westin aka marcuswestin2 [https://github.com/marcuswestin2]

	Jed Schmidt aka jed [https://github.com/jed]

	Dave Peticolas aka jdavisp3 [https://github.com/jdavisp3]

	Trae Robrock aka trobrock [https://github.com/trobrock]

	Shankar Karuppiah aka shankar0306 [https://github.com/shankar0306]

	Ignacio Burgueño aka ignacio [https://github.com/ignacio]

Thanks.

LICENSE - “MIT License”

Copyright (c) 2010 Matthew Ranney, http://ranney.com/

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

[image: spacer]

Changelog

v0.7.2 - April 29, 2012

Many contributed fixes. Thank you, contributors.

	[GH-190] - pub/sub mode fix (Brian Noguchi)

	[GH-165] - parser selection fix (TEHEK)

	numerous documentation and examples updates

	auth errors emit Errors instead of Strings (David Trejo)

v0.7.1 - November 15, 2011

Fix regression in reconnect logic.

Very much need automated tests for reconnection and queue logic.

v0.7.0 - November 14, 2011

Many contributed fixes. Thanks everybody.

	[GH-127] - properly re-initialize parser on reconnect

	[GH-136] - handle passing undefined as callback (Ian Babrou)

	[GH-139] - properly handle exceptions thrown in pub/sub event handlers (Felix Geisendörfer)

	[GH-141] - detect closing state on stream error (Felix Geisendörfer)

	[GH-142] - re-select database on reconnection (Jean-Hugues Pinson)

	[GH-146] - add sort example (Maksim Lin)

Some more goodies:

	Fix bugs with node 0.6

	Performance improvements

	New version of multi_bench.js that tests more realistic scenarios

	[GH-140] - support optional callback for subscribe commands

	Properly flush and error out command queue when connection fails

	Initial work on reconnection thresholds

v0.6.7 - July 30, 2011

(accidentally skipped v0.6.6)

Fix and test for [GH-123]

Passing an Array as as the last argument should expand as users
expect. The old behavior was to coerce the arguments into Strings,
which did surprising things with Arrays.

v0.6.5 - July 6, 2011

Contributed changes:

	Support SlowBuffers (Umair Siddique)

	Add Multi to exports (Louis-Philippe Perron)

	Fix for drain event calculation (Vladimir Dronnikov)

Thanks!

v0.6.4 - June 30, 2011

Fix bug with optional callbacks for hmset.

v0.6.2 - June 30, 2011

Bugs fixed:

	authentication retry while server is loading db (danmaz74) [GH-101]

	command arguments processing issue with arrays

New features:

	Auto update of new commands from redis.io (Dave Hoover)

	Performance improvements and backpressure controls.

	Commands now return the true/false value from the underlying socket write(s).

	Implement command_queue high water and low water for more better control of queueing.

See examples/backpressure_drain.js for more information.

v0.6.1 - June 29, 2011

Add support and tests for Redis scripting through EXEC command.

Bug fix for monitor mode. (forddg)

Auto update of new commands from redis.io (Dave Hoover)

v0.6.0 - April 21, 2011

Lots of bugs fixed.

	connection error did not properly trigger reconnection logic [GH-85]

	client.hmget(key, [val1, val2]) was not expanding properly [GH-66]

	client.quit() while in pub/sub mode would throw an error [GH-87]

	client.multi([‘hmset’, ‘key’, {foo: ‘bar’}]) fails [GH-92]

	unsubscribe before subscribe would make things very confused [GH-88]

	Add BRPOPLPUSH [GH-79]

v0.5.11 - April 7, 2011

Added DISCARD

I originally didn’t think DISCARD would do anything here because of the clever MULTI interface, but somebody
pointed out to me that DISCARD can be used to flush the WATCH set.

v0.5.10 - April 6, 2011

Added HVALS

v0.5.9 - March 14, 2011

Fix bug with empty Array arguments - Andy Ray

v0.5.8 - March 14, 2011

Add MONITOR command and special monitor command reply parsing.

v0.5.7 - February 27, 2011

Add magical auth command.

Authentication is now remembered by the client and will be automatically sent to the server
on every connection, including any reconnections.

v0.5.6 - February 22, 2011

Fix bug in ready check with return_buffers set to true.

Thanks to Dean Mao and Austin Chau.

v0.5.5 - February 16, 2011

Add probe for server readiness.

When a Redis server starts up, it might take a while to load the dataset into memory.
During this time, the server will accept connections, but will return errors for all non-INFO
commands. Now node_redis will send an INFO command whenever it connects to a server.
If the info command indicates that the server is not ready, the client will keep trying until
the server is ready. Once it is ready, the client will emit a “ready” event as well as the
“connect” event. The client will queue up all commands sent before the server is ready, just
like it did before. When the server is ready, all offline/non-ready commands will be replayed.
This should be backward compatible with previous versions.

To disable this ready check behavior, set options.no_ready_check when creating the client.

As a side effect of this change, the key/val params from the info command are available as
client.server_options. Further, the version string is decomposed into individual elements
in client.server_options.versions.

v0.5.4 - February 11, 2011

Fix excess memory consumption from Queue backing store.

Thanks to Gustaf Sjöberg.

v0.5.3 - February 5, 2011

Fix multi/exec error reply callback logic.

Thanks to Stella Laurenzo.

v0.5.2 - January 18, 2011

Fix bug where unhandled error replies confuse the parser.

v0.5.1 - January 18, 2011

Fix bug where subscribe commands would not handle redis-server startup error properly.

v0.5.0 - December 29, 2010

Some bug fixes:

	An important bug fix in reconnection logic. Previously, reply callbacks would be invoked twice after
a reconnect.

	Changed error callback argument to be an actual Error object.

New feature:

	Add friendly syntax for HMSET using an object.

v0.4.1 - December 8, 2010

Remove warning about missing hiredis. You probably do want it though.

v0.4.0 - December 5, 2010

Support for multiple response parsers and hiredis C library from Pieter Noordhuis.
Return Strings instead of Buffers by default.
Empty nested mb reply bug fix.

v0.3.9 - November 30, 2010

Fix parser bug on failed EXECs.

v0.3.8 - November 10, 2010

Fix for null MULTI response when WATCH condition fails.

v0.3.7 - November 9, 2010

Add “drain” and “idle” events.

v0.3.6 - November 3, 2010

Add all known Redis commands from Redis master, even ones that are coming in 2.2 and beyond.

Send a friendlier “error” event message on stream errors like connection refused / reset.

v0.3.5 - October 21, 2010

A few bug fixes.

	Fixed bug with nil multi-bulk reply lengths that showed up with BLPOP timeouts.

	Only emit end once when connection goes away.

	Fixed bug in test.js where driver finished before all tests completed.

unversioned wasteland

See the git history for what happened before.

socket.io

Sockets for the rest of us

The socket.io client is basically a simple HTTP Socket interface implementation.
It looks similar to WebSocket while providing additional features and
leveraging other transports when WebSocket is not supported by the user’s
browser.

var socket = io.connect('http://domain.com');
socket.on('connect', function () {
 // socket connected
});
socket.on('custom event', function () {
 // server emitted a custom event
});
socket.on('disconnect', function () {
 // socket disconnected
});
socket.send('hi there');

Recipes

Utilizing namespaces (ie: multiple sockets)

If you want to namespace all the messages and events emitted to a particular
endpoint, simply specify it as part of the connect uri:

var chat = io.connect('http://localhost/chat');
chat.on('connect', function () {
 // chat socket connected
});

var news = io.connect('/news'); // io.connect auto-detects host
news.on('connect', function () {
 // news socket connected
});

Emitting custom events

To ease with the creation of applications, you can emit custom events outside
of the global message event.

var socket = io.connect();
socket.emit('server custom event', { my: 'data' });

Forcing disconnection

var socket = io.connect();
socket.on('connect', function () {
 socket.disconnect();
});

Documentation

io#connect

io.connect(uri, [options]);

Options:

	resource

socket.io

The resource is what allows the socket.io server to identify incoming connections by socket.io clients. In other words, any HTTP server can implement socket.io and still serve other normal, non-realtime HTTP requests.

	transports

['websocket', 'flashsocket', 'htmlfile', 'xhr-multipart', 'xhr-polling', 'jsonp-polling']

A list of the transports to attempt to utilize (in order of preference).

	‘connect timeout’

5000

The amount of milliseconds a transport has to create a connection before we consider it timed out.

	‘try multiple transports’

true

A boolean indicating if we should try other transports when the connectTimeout occurs.

	reconnect

true

A boolean indicating if we should automatically reconnect if a connection is disconnected.

	‘reconnection delay’

500

The amount of milliseconds before we try to connect to the server again. We are using a exponential back off algorithm for the following reconnections, on each reconnect attempt this value will get multiplied (500 > 1000 > 2000 > 4000 > 8000).

	‘max reconnection attempts’

10

The amount of attempts should we make using the current transport to connect to the server? After this we will do one final attempt, and re-try with all enabled transport methods before we give up.

Properties:

	options

The passed in options combined with the defaults.

	connected

Whether the socket is connected or not.

	connecting

Whether the socket is connecting or not.

	reconnecting

Whether we are reconnecting or not.

	transport

The transport instance.

Methods:

	connect(λ)

Establishes a connection. If λ is supplied as argument, it will be called once the connection is established.

	send(message)

A string of data to send.

	disconnect

Closes the connection.

	on(event, λ)

Adds a listener for the event event.

	once(event, λ)

Adds a one time listener for the event event. The listener is removed after the first time the event is fired.

	removeListener(event, λ)

Removes the listener λ for the event event.

Events:

	connect

Fired when the connection is established and the handshake successful.

	connecting(transport_type)

Fired when a connection is attempted, passing the transport name.

	connect_failed

Fired when the connection timeout occurs after the last connection attempt.
This only fires if the connectTimeout option is set.
If the tryTransportsOnConnectTimeout option is set, this only fires once all
possible transports have been tried.

	message(message)

Fired when a message arrives from the server

	close

Fired when the connection is closed. Be careful with using this event, as some transports will fire it even under temporary, expected disconnections (such as XHR-Polling).

	disconnect

Fired when the connection is considered disconnected.

	reconnect(transport_type,reconnectionAttempts)

Fired when the connection has been re-established. This only fires if the reconnect option is set.

	reconnecting(reconnectionDelay,reconnectionAttempts)

Fired when a reconnection is attempted, passing the next delay for the next reconnection.

	reconnect_failed

Fired when all reconnection attempts have failed and we where unsuccessful in reconnecting to the server.

Contributors

Guillermo Rauch <

guillermo@learnboost.com>

Arnout Kazemier <

info@3rd-eden.com>

License

(The MIT License)

Copyright (c) 2010 LearnBoost <

dev@learnboost.com>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

0.9.11 / 2012-11-02

	Enable use of ‘xhr’ transport in Node.js

	Fix the problem with disconnecting xhr-polling users

	Add should to devDependencies

	Prefer XmlHttpRequest if CORS is available

	Make client compatible with AMD loaders.

0.9.10 / 2012-08-10

	fix removeAllListeners to behave as expected.

	set withCredentials to true only if xdomain.

	socket: disable disconnect on unload by default.

0.9.9 / 2012-08-01

	socket: fixed disconnect xhr url and made it actually sync

	*: bump xmlhttprequest dep

0.9.8 / 2012-07-24

	Fixed build.

0.9.7 / 2012-07-24

	iOS websocket crash fix.

	Fixed potential open collision.

	Fixed disconnectSync.

0.9.6 / 2012-04-17

	Don’t position the jsonp form off the screen (android fix).

0.9.5 / 2012-04-05

	Bumped version.

0.9.4 / 2012-04-01

	Fixes polling loop upon reconnect advice (fixes #438).

0.9.3 / 2012-03-28

	Fix XHR.check, which was throwing an error transparently and causing non-IE browsers to fall back to JSONP [mikito]

	Fixed forced disconnect on window close [zzzaaa]

0.9.2 / 2012-03-13

	Transport order set by “options” [zzzaaa]

0.9.1-1 / 2012-03-02

	Fixed active-x-obfuscator NPM dependency.

0.9.1 / 2012-03-02

	Misc corrections.

	Added warning within Firefox about webworker test in test runner.

	Update ws dependency [einaros]

	Implemented client side heartbeat checks. [felixge]

	Improved Firewall support with ActiveX obfuscation. [felixge]

	Fixed error handling during connection process. [Outsideris]

0.9.0 / 2012-02-26

	Added DS_Store to gitignore.

	Updated depedencies.

	Bumped uglify

	Tweaking code so it doesn’t throw an exception when used inside a WebWorker in Firefox

	Do not rely on Array.prototype.indexOf as it breaks with pages that use the Prototype.js library.

	Windows support landed

	Use @einaros ws module instead of the old crap one

	Fix for broken closeTimeout and ‘IE + xhr’ goes into infinite loop on disconnection

	Disabled reconnection on error if reconnect option is set to false

	Set withCredentials to true before xhr to fix authentication

	Clears the timeout from reconnection attempt when there is a successful or failed reconnection.
This fixes the issue of setTimeout’s carrying over from previous reconnection
and changing (skipping) values of self.reconnectionDelay in the newer reconnection.

	Removed decoding of parameters when chunking the query string.
This was used later on to construct the url to post to the socket.io server
for connection and if we’re adding custom parameters of our own to this url
(for example for OAuth authentication) they were being sent decoded, which is wrong.

0.8.7 / 2011-11-05

	Bumped client

0.8.6 / 2011-10-27

	Added WebWorker support.

	Fixed swfobject and web_socket.js to not assume window.

	Fixed CORS detection for webworker.

	Fix defer for webkit in a webworker.

	Fixed io.util.request to not rely on window.

	FIxed; use global instead of window and dont rely on document.

	Fixed; JSON-P handshake if CORS is not available.

	Made underlying Transport disconnection trigger immediate socket.io disconnect.

	Fixed warning when compressing with Google Closure Compiler.

	Fixed builder’s uglify utf-8 support.

	Added workaround for loading indicator in FF jsonp-polling. [3rd-Eden]

	Fixed host discovery lookup. [holic]

	Fixed close timeout when disconnected/reconnecting. [jscharlach]

	Fixed jsonp-polling feature detection.

	Fixed jsonp-polling client POSTing of \n.

	Fixed test runner on IE6/7

0.8.5 / 2011-10-07

	Bumped client

0.8.4 / 2011-09-06

	Corrected build

0.8.3 / 2011-09-03

	Fixed \n parsing for non-JSON packets.

	Fixed; make Socket.IO XHTML doctype compatible (fixes #460 from server)

	Fixed support for Node.JS running socket.io-client.

	Updated repository name in package.json.

	Added support for different policy file ports without having to port
forward 843 on the server side [3rd-Eden]

0.8.2 / 2011-08-29

	Fixed flashsocket detection.

0.8.1 / 2011-08-29

	Bump version.

0.8.0 / 2011-08-28

	Added MozWebSocket support (hybi-10 doesn’t require API changes) [einaros].

0.7.11 / 2011-08-27

	Corrected previous release (missing build).

0.7.10 / 2011-08-27

	Fix for failing fallback in websockets

0.7.9 / 2011-08-12

	Added check on Socket#onConnect to prevent double connect events on the main manager.

	Fixed socket namespace connect test. Remove broken alternative namespace connect test.

	Removed test handler for removed test.

	Bumped version to match socket.io server.

0.7.5 / 2011-08-08

	Added querystring support for connect [3rd-Eden]

	Added partial Node.JS transports support [3rd-Eden, josephg]

	Fixed builder test.

	Changed util.inherit to replicate Object.create / proto.

	Changed and cleaned up some acceptance tests.

	Fixed race condition with a test that could not be run multiple times.

	Added test for encoding a payload.

	Added the ability to override the transport to use in acceptance test [3rd-Eden]

	Fixed multiple connect packets [DanielBaulig]

	Fixed jsonp-polling over-buffering [3rd-Eden]

	Fixed ascii preservation in minified socket.io client [3rd-Eden]

	Fixed socket.io in situations where the page is not served through utf8.

	Fixed namespaces not reconnecting after disconnect [3rd-Eden]

	Fixed default port for secure connections.

0.7.4 / 2011-07-12

	Added SocketNamespace#of shortcut. [3rd-Eden]

	Fixed a IE payload decoding bug. [3rd-Eden]

	Honor document protocol, unless overriden. [dvv]

	Fixed new builder dependencies. [3rd-Eden]

0.7.3 / 2011-06-30

	Fixed; acks don’t depend on arity. They’re automatic for .send and
callback based for .emit. [dvv]

	Added support for sub-sockets authorization. [3rd-Eden]

	Added BC support for new io.connect. [fat]

	Fixed double connect events. [3rd-Eden]

	Fixed reconnection with jsonp-polling maintaining old sessionid. [franck34]

0.7.2 / 2011-06-22

	Added noop message type.

0.7.1 / 2011-06-21

	Bumped socket.io dependency version for acceptance tests.

0.7.0 / 2011-06-21

	http://socket.io/announcement.html

How to try the sample

Assuming you have Web server (e.g. Apache) running at http://example.com/ .

	Download web-socket-ruby [http://github.com/gimite/web-socket-ruby/tree/master].

	Run sample Web Socket server (echo server) in example.com with: (#1)

 node-XMLHttpRequest

node-XMLHttpRequest

node-XMLHttpRequest is a wrapper for the built-in http client to emulate the
browser XMLHttpRequest object.

This can be used with JS designed for browsers to improve reuse of code and
allow the use of existing libraries.

Note: This library currently conforms to XMLHttpRequest 1 [http://www.w3.org/TR/XMLHttpRequest/]. Version 2.0 will target XMLHttpRequest Level 2 [http://www.w3.org/TR/XMLHttpRequest2/].

Usage

Here’s how to include the module in your project and use as the browser-based
XHR object.

var XMLHttpRequest = require("xmlhttprequest").XMLHttpRequest;
var xhr = new XMLHttpRequest();

Note: use the lowercase string “xmlhttprequest” in your require(). On
case-sensitive systems (eg Linux) using uppercase letters won’t work.

Versions

Prior to 1.4.0 version numbers were arbitrary. From 1.4.0 on they conform to
the standard major.minor.bugfix. 1.x shouldn’t necessarily be considered
stable just because it’s above 0.x.

Since the XMLHttpRequest API is stable this library’s API is stable as
well. Major version numbers indicate significant core code changes.
Minor versions indicate minor core code changes or better conformity to
the W3C spec.

Supports

	Async and synchronous requests

	GET, POST, PUT, and DELETE requests

	All spec methods (open, send, abort, getRequestHeader,
getAllRequestHeaders, event methods)

	Requests to all domains

Known Issues / Missing Features

For a list of open issues or to report your own visit the github issues
page [https://github.com/driverdan/node-XMLHttpRequest/issues].

	Local file access may have unexpected results for non-UTF8 files

	Synchronous requests don’t set headers properly

	Synchronous requests freeze node while waiting for response (But that’s what you want, right? Stick with async!).

	Some events are missing, such as abort

	getRequestHeader is case-sensitive

	Cookies aren’t persisted between requests

	Missing XML support

	Missing basic auth

 ws: a node.js websocket library

 [image: Build Status] [http://travis-ci.org/einaros/ws]

ws: a node.js websocket library

ws is a simple to use websocket implementation, up-to-date against RFC-6455, and probably the fastest WebSocket library for node.js [http://hobbycoding.posterous.com/the-fastest-websocket-module-for-nodejs].

Passes the quite extensive Autobahn test suite. See http://einaros.github.com/ws for the full reports.

Comes with a command line utility, wscat, which can either act as a server (–listen), or client (–connect); Use it to debug simple websocket services.

Protocol support

	Hixie draft 76 (Old and deprecated, but still in use by Safari and Opera. Added to ws version 0.4.2, but server only. Can be disabled by setting the disableHixie option to true.)

	HyBi drafts 07-12 (Use the option protocolVersion: 8, or argument -p 8 for wscat)

	HyBi drafts 13-17 (Current default, alternatively option protocolVersion: 13, or argument -p 13 for wscat)

See the echo.websocket.org example below for how to use the protocolVersion option.

Usage

Installing

npm install ws

Sending and receiving text data

var WebSocket = require('ws');
var ws = new WebSocket('ws://www.host.com/path');
ws.on('open', function() {
 ws.send('something');
});
ws.on('message', function(data, flags) {
 // flags.binary will be set if a binary data is received
 // flags.masked will be set if the data was masked
});

Sending binary data

var WebSocket = require('ws');
var ws = new WebSocket('ws://www.host.com/path');
ws.on('open', function() {
 var array = new Float32Array(5);
 for (var i = 0; i < array.length; ++i) array[i] = i / 2;
 ws.send(array, {binary: true, mask: true});
});

Setting mask, as done for the send options above, will cause the data to be masked according to the websocket protocol. The same option applies for text data.

Server example

var WebSocketServer = require('ws').Server
 , wss = new WebSocketServer({port: 8080});
wss.on('connection', function(ws) {
 ws.on('message', function(message) {
 console.log('received: %s', message);
 });
 ws.send('something');
});

Error handling best practices

// If the WebSocket is closed before the following send is attempted
ws.send('something');

// Errors (both immediate and async write errors) can be detected in an optional callback.
// The callback is also the only way of being notified that data has actually been sent.
ws.send('something', function(error) {
 // if error is null, the send has been completed,
 // otherwise the error object will indicate what failed.
});

// Immediate errors can also be handled with try/catch-blocks, but **note**
// that since sends are inherently asynchronous, socket write failures will *not*
// be captured when this technique is used.
try {
 ws.send('something');
}
catch (e) {
 // handle error
}

echo.websocket.org demo

var WebSocket = require('ws');
var ws = new WebSocket('ws://echo.websocket.org/', {protocolVersion: 8, origin: 'http://websocket.org'});
ws.on('open', function() {
 console.log('connected');
 ws.send(Date.now().toString(), {mask: true});
});
ws.on('close', function() {
 console.log('disconnected');
});
ws.on('message', function(data, flags) {
 console.log('Roundtrip time: ' + (Date.now() - parseInt(data)) + 'ms', flags);
 setTimeout(function() {
 ws.send(Date.now().toString(), {mask: true});
 }, 500);
});

wscat against echo.websocket.org

$ npm install -g ws
$ wscat -c ws://echo.websocket.org -p 8
connected (press CTRL+C to quit)
> hi there
< hi there
> are you a happy parrot?
< are you a happy parrot?

Other examples

For a full example with a browser client communicating with a ws server, see the examples folder.

Note that the usage together with Express 3.0 is quite different from Express 2.x. The difference is expressed in the two different serverstats-examples.

Otherwise, see the test cases.

Running the tests

make test

API Docs

See the doc/ directory for Node.js-like docs for the ws classes.

License

(The MIT License)

Copyright (c) 2011 Einar Otto Stangvik <

einaros@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 v0.4.24 - December 6th, 2012

v0.4.24 - December 6th, 2012

	Removed install.js. [shtylman]

	Added browser field to package.json. [shtylman]

	Support overwriting host header. [Raynos]

	Emit ‘listening’ also with custom http server. [sebiq]

v0.4.24 - December 6th, 2012

	Yet another intermediate release, to not delay minor features any longer.

	Native support installation issues further circumvented. [einaros]

v0.4.23 - November 19th, 2012

	Service release - last before major upgrade.

	Changes default host from 127.0.0.1 to 0.0.0.0. [einaros]

v0.4.22 - October 3rd, 2012

	clear failsafe cleanup timeout once cleanup is called [AndreasMadsen]

	added w3c compatible CloseEvent for onclose / addEventListener(“close”, ...). [einaros]

	fix the sub protocol header handler [sonnyp]

	fix unhandled exception if socket closes and ‘error’ is emitted [jmatthewsr-ms]

v0.4.21 - July 14th, 2012

	Emit error if server reponds with anything other than status code 101. [einaros]

	Added ‘headers’ event to server. [rauchg]

	path.exists moved to fs.exists. [blakmatrix]

v0.4.20 - June 26th, 2012

	node v0.8.0 compatibility release.

v0.4.19 - June 19th, 2012

	Change sender to merge buffers for relatively small payloads, may improve perf in some cases [einaros]

	Avoid EventEmitter for Receiver classes. As above this may improve perf. [einaros]

	Renamed fallback files from the somewhat misleading ‘*Windows’. [einaros]

v0.4.18 - June 14th 2012

	Fixed incorrect md5 digest encoding in Hixie handshake [nicokaiser]

	Added example of use with Express 3 [einaros]

	Change installation procedure to not require –ws:native to build native extensions. They will now build if a compiler is available. [einaros]

v0.4.17 - June 13th 2012

	Improve error handling during connection handshaking [einaros]

	Ensure that errors are caught also after connection teardown [nicokaiser]

	Update ‘mocha’ version to 1.1.0. [einaros]

	Stop showing ‘undefined’ for some error logs. [tricknotes]

	Update ‘should’ version to 0.6.3 [tricknotes]

v0.4.16 - June 1st 2012

	Build fix for Windows. [einaros]

v0.4.15 - May 20th 2012

	Enable fauxe streaming for hixie tansport. [einaros]

	Allow hixie sender to deal with buffers. [einaros/pigne]

	Allow error code 1011. [einaros]

	Fix framing for empty packets (empty pings and pongs might break). [einaros]

	Improve error and close handling, to avoid connections lingering in CLOSING state. [einaros]

v0.4.14 - Apr 30th 2012

	use node-gyp instead of node-waf [TooTallNate]

	remove old windows compatibility makefile, and silently fall back to native modules [einaros]

	ensure connection status [nicokaiser]

	websocket client updated to use port 443 by default for wss:// connections [einaros]

	support unix sockets [kschzt]

v0.4.13 - Apr 12th 2012

	circumvent node 0.6+ related memory leak caused by Object.defineProperty [nicokaiser]

	improved error handling, improving stability in massive load use cases [nicokaiser]

v0.4.12 - Mar 30th 2012

	various memory leak / possible memory leak cleanups [einaros]

	api documentation [nicokaiser]

	add option to disable client tracking [nicokaiser]

v0.4.11 - Mar 24th 2012

	node v0.7 compatibillity release

	gyp support [TooTallNate]

	commander dependency update [jwueller]

	loadbalancer support [nicokaiser]

v0.4.10 - Mar 22th 2012

	Final hixie close frame fixes. [nicokaiser]

v0.4.9 - Mar 21st 2012

	Various hixie bugfixes (such as proper close frame handling). [einaros]

v0.4.8 - Feb 29th 2012

	Allow verifyClient to run asynchronously [karlsequin]

	Various bugfixes and cleanups. [einaros]

v0.4.7 - Feb 21st 2012

	Exposed bytesReceived from websocket client object, which makes it possible to implement bandwidth sampling. [einaros]

	Updated browser based file upload example to include and output per websocket channel bandwidth sampling. [einaros]

	Changed build scripts to check which architecture is currently in use. Required after the node.js changes to have prebuilt packages target ia32 by default. [einaros]

v0.4.6 - Feb 9th 2012

	Added browser based file upload example. [einaros]

	Added server-to-browser status push example. [einaros]

	Exposed pause() and resume() on WebSocket object, to enable client stream shaping. [einaros]

v0.4.5 - Feb 7th 2012

	Corrected regression bug in handling of connections with the initial frame delivered across both http upgrade head and a standalone packet. This would lead to a race condition, which in some cases could cause message corruption. [einaros]

v0.4.4 - Feb 6th 2012

	Pass original request object to verifyClient, for cookie or authentication verifications. [einaros]

	Implemented addEventListener and slightly improved the emulation API by adding a MessageEvent with a readonly data attribute. [aslakhellesoy]

	Rewrite parts of hybi receiver to avoid stack overflows for large amounts of packets bundled in the same buffer / packet. [einaros]

v0.4.3 - Feb 4th 2012

	Prioritized update: Corrected issue which would cause sockets to stay open longer than necessary, and resource leakage because of this. [einaros]

v0.4.2 - Feb 4th 2012

	Breaking change: WebSocketServer’s verifyOrigin option has been renamed to verifyClient. [einaros]

	verifyClient now receives { origin: ‘origin header’, secure: true/false }, where ‘secure’ will be true for ssl connections. [einaros]

	Split benchmark, in preparation for more thorough case. [einaros]

	Introduced hixie-76 draft support for server, since Safari (iPhone / iPad / OS X) and Opera still aren’t updated to use Hybi. [einaros]

	Expose ‘supports’ object from WebSocket, to indicate e.g. the underlying transport’s support for binary data. [einaros]

	Test and code cleanups. [einaros]

v0.4.1 - Jan 25th 2012

	Use readline in wscat [tricknotes]

	Refactor _state away, in favor of the new _readyState [tricknotes]

	travis-ci integration [einaros]

	Fixed race condition in testsuite, causing a few tests to fail (without actually indicating errors) on travis [einaros]

	Expose pong event [paddybyers]

	Enabled running of WebSocketServer in noServer-mode, meaning that upgrades are passed in manually. [einaros]

	Reworked connection procedure for WebSocketServer, and cleaned up tests. [einaros]

v0.4.0 - Jan 2nd 2012

	Windows compatibility [einaros]

	Windows compatible test script [einaros]

v0.3.9 - Jan 1st 2012

	Improved protocol framing performance [einaros]

	WSS support [kazuyukitanimura]

	WSS tests [einaros]

	readyState exposed [justinlatimer, tricknotes]

	url property exposed [justinlatimer]

	Removed old ‘state’ property [einaros]

	Test cleanups [einaros]

v0.3.8 - Dec 27th 2011

	Made it possible to listen on specific paths, which is especially good to have for precreated http servers [einaros]

	Extensive WebSocket / WebSocketServer cleanup, including changing all internal properties to unconfigurable, unenumerable properties [einaros]

	Receiver modifications to ensure even better performance with fragmented sends [einaros]

	Fixed issue in sender.js, which would cause SlowBuffer instances (such as returned from the crypto library’s randomBytes) to be copied (and thus be dead slow) [einaros]

	Removed redundant buffer copy in sender.js, which should improve server performance [einaros]

v0.3.7 - Dec 25nd 2011

	Added a browser based API which uses EventEmitters internally [3rd-Eden]

	Expose request information from upgrade event for websocket server clients [mmalecki]

v0.3.6 - Dec 19th 2011

	Added option to let WebSocket.Server use an already existing http server [mmalecki]

	Migrating various option structures to use options.js module [einaros]

	Added a few more tests, options and handshake verifications to ensure that faulty connections are dealt with [einaros]

	Code cleanups in Sender and Receiver, to ensure even faster parsing [einaros]

v0.3.5 - Dec 13th 2011

	Optimized Sender.js, Receiver.js and bufferutil.cc:

	Apply loop-unrolling-like small block copies rather than use node.js Buffer#copy() (which is slow).

	Mask blocks of data using combination of 32bit xor and loop-unrolling, instead of single bytes.

	Keep pre-made send buffer for small transfers.

	Leak fixes and code cleanups.

v0.3.3 - Dec 12th 2011

	Compile fix for Linux.

	Rewrote parts of WebSocket.js, to avoid try/catch and thus avoid optimizer bailouts.

v0.3.2 - Dec 11th 2011

	Further performance updates, including the additions of a native BufferUtil module, which deals with several of the cpu intensive WebSocket operations.

v0.3.1 - Dec 8th 2011

	Service release, fixing broken tests.

v0.3.0 - Dec 8th 2011

	Node.js v0.4.x compatibility.

	Code cleanups and efficiency improvements.

	WebSocket server added, although this will still mainly be a client library.

	WebSocket server certified to pass the Autobahn test suite.

	Protocol improvements and corrections - such as handling (redundant) masks for empty fragments.

	‘wscat’ command line utility added, which can act as either client or server.

v0.2.6 - Dec 3rd 2011

	Renamed to ‘ws’. Big woop, right – but easy-websocket really just doesn’t cut it anymore!

v0.2.5 - Dec 3rd 2011

	Rewrote much of the WebSocket parser, to ensure high speed for highly fragmented messages.

	Added a BufferPool, as a start to more efficiently deal with allocations for WebSocket connections. More work to come, in that area.

	Updated the Autobahn report, at http://einaros.github.com/easy-websocket, with comparisons against WebSocket-Node 1.0.2 and Chrome 16.

v0.2.0 - Nov 25th 2011

	Major rework to make sure all the Autobahn test cases pass. Also updated the internal tests to cover more corner cases.

v0.1.2 - Nov 14th 2011

	Back and forth, back and forth: now settled on keeping the api (event names, methods) closer to the websocket browser api. This will stick now.

	Started keeping this history record. Better late than never, right?

 Commander.js

Commander.js

The complete solution for node.js [http://nodejs.org] command-line interfaces, inspired by Ruby’s commander [https://github.com/visionmedia/commander].

[image: Build Status] [http://travis-ci.org/visionmedia/commander.js]

Installation

$ npm install commander

Option parsing

Options with commander are defined with the .option() method, also serving as documentation for the options. The example below parses args and options from process.argv, leaving remaining args as the program.args array which were not consumed by options.

#!/usr/bin/env node

/**
 * Module dependencies.
 */

var program = require('commander');

program
 .version('0.0.1')
 .option('-p, --peppers', 'Add peppers')
 .option('-P, --pineapple', 'Add pineapple')
 .option('-b, --bbq', 'Add bbq sauce')
 .option('-c, --cheese [type]', 'Add the specified type of cheese [marble]', 'marble')
 .parse(process.argv);

console.log('you ordered a pizza with:');
if (program.peppers) console.log(' - peppers');
if (program.pineapple) console.log(' - pineappe');
if (program.bbq) console.log(' - bbq');
console.log(' - %s cheese', program.cheese);

Short flags may be passed as a single arg, for example -abc is equivalent to -a -b -c. Multi-word options such as “–template-engine” are camel-cased, becoming program.templateEngine etc.

Automated –help

The help information is auto-generated based on the information commander already knows about your program, so the following --help info is for free:

 $./examples/pizza --help

 Usage: pizza [options]

 Options:

 -V, --version output the version number
 -p, --peppers Add peppers
 -P, --pineapple Add pineappe
 -b, --bbq Add bbq sauce
 -c, --cheese <type> Add the specified type of cheese [marble]
 -h, --help output usage information

Coercion

function range(val) {
 return val.split('..').map(Number);
}

function list(val) {
 return val.split(',');
}

program
 .version('0.0.1')
 .usage('[options] <file ...>')
 .option('-i, --integer <n>', 'An integer argument', parseInt)
 .option('-f, --float <n>', 'A float argument', parseFloat)
 .option('-r, --range <a>..', 'A range', range)
 .option('-l, --list <items>', 'A list', list)
 .option('-o, --optional [value]', 'An optional value')
 .parse(process.argv);

console.log(' int: %j', program.integer);
console.log(' float: %j', program.float);
console.log(' optional: %j', program.optional);
program.range = program.range || [];
console.log(' range: %j..%j', program.range[0], program.range[1]);
console.log(' list: %j', program.list);
console.log(' args: %j', program.args);

Custom help

You can display arbitrary -h, --help information
by listening for “–help”. Commander will automatically
exit once you are done so that the remainder of your program
does not execute causing undesired behaviours, for example
in the following executable “stuff” will not output when
--help is used.

#!/usr/bin/env node

/**
 * Module dependencies.
 */

var program = require('../');

function list(val) {
 return val.split(',').map(Number);
}

program
 .version('0.0.1')
 .option('-f, --foo', 'enable some foo')
 .option('-b, --bar', 'enable some bar')
 .option('-B, --baz', 'enable some baz');

// must be before .parse() since
// node's emit() is immediate

program.on('--help', function(){
 console.log(' Examples:');
 console.log('');
 console.log(' $ custom-help --help');
 console.log(' $ custom-help -h');
 console.log('');
});

program.parse(process.argv);

console.log('stuff');

yielding the following help output:

Usage: custom-help [options]

Options:

 -h, --help output usage information
 -V, --version output the version number
 -f, --foo enable some foo
 -b, --bar enable some bar
 -B, --baz enable some baz

Examples:

 $ custom-help --help
 $ custom-help -h

.prompt(msg, fn)

Single-line prompt:

program.prompt('name: ', function(name){
 console.log('hi %s', name);
});

Multi-line prompt:

program.prompt('description:', function(name){
 console.log('hi %s', name);
});

Coercion:

program.prompt('Age: ', Number, function(age){
 console.log('age: %j', age);
});

program.prompt('Birthdate: ', Date, function(date){
 console.log('date: %s', date);
});

.password(msg[, mask], fn)

Prompt for password without echoing:

program.password('Password: ', function(pass){
 console.log('got "%s"', pass);
 process.stdin.destroy();
});

Prompt for password with mask char “*”:

program.password('Password: ', '*', function(pass){
 console.log('got "%s"', pass);
 process.stdin.destroy();
});

.confirm(msg, fn)

Confirm with the given msg:

program.confirm('continue? ', function(ok){
 console.log(' got %j', ok);
});

.choose(list, fn)

Let the user choose from a list:

var list = ['tobi', 'loki', 'jane', 'manny', 'luna'];

console.log('Choose the coolest pet:');
program.choose(list, function(i){
 console.log('you chose %d "%s"', i, list[i]);
});

Links

	API documentation [http://visionmedia.github.com/commander.js/]

	ascii tables [https://github.com/LearnBoost/cli-table]

	progress bars [https://github.com/visionmedia/node-progress]

	more progress bars [https://github.com/substack/node-multimeter]

	examples [https://github.com/visionmedia/commander.js/tree/master/examples]

License

(The MIT License)

Copyright (c) 2011 TJ Holowaychuk <

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 0.6.1 / 2012-06-01

0.6.1 / 2012-06-01

	Added: append (yes or no) on confirmation

	Added: allow node.js v0.7.x

0.6.0 / 2012-04-10

	Added .prompt(obj, callback) support. Closes #49

	Added default support to .choose(). Closes #41

	Fixed the choice example

0.5.1 / 2011-12-20

	Fixed password() for recent nodes. Closes #36

0.5.0 / 2011-12-04

	Added sub-command option support [itay]

0.4.3 / 2011-12-04

	Fixed custom help ordering. Closes #32

0.4.2 / 2011-11-24

	Added travis support

	Fixed: line-buffered input automatically trimmed. Closes #31

0.4.1 / 2011-11-18

	Removed listening for “close” on –help

0.4.0 / 2011-11-15

	Added support for --. Closes #24

0.3.3 / 2011-11-14

	Fixed: wait for close event when writing help info [Jerry Hamlet]

0.3.2 / 2011-11-01

	Fixed long flag definitions with values [felixge]

0.3.1 / 2011-10-31

	Changed --version short flag to -V from -v

	Changed .version() so it’s configurable [felixge]

0.3.0 / 2011-10-31

	Added support for long flags only. Closes #18

0.2.1 / 2011-10-24

	“node”: “>= 0.4.x < 0.7.0”. Closes #20

0.2.0 / 2011-09-26

	Allow for defaults that are not just boolean. Default peassignment only occurs for –no-*, optional, and required arguments. [Jim Isaacs]

0.1.0 / 2011-08-24

	Added support for custom --help output

0.0.5 / 2011-08-18

	Changed: when the user enters nothing prompt for password again

	Fixed issue with passwords beginning with numbers [NuckChorris]

0.0.4 / 2011-08-15

	Fixed Commander#args

0.0.3 / 2011-08-15

	Added default option value support

0.0.2 / 2011-08-15

	Added mask support to Command#password(str[, mask], fn)

	Added Command#password(str, fn)

0.0.1 / 2010-01-03

	Initial release

 tinycolor

tinycolor

This is a no-fuzz, barebone, zero muppetry color module for node.js.

 options.js

options.js

A very light-weight in-code option parsers for node.js.

License

(The MIT License)

Copyright (c) 2012 Einar Otto Stangvik <

einaros@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 ws

ws

Class: ws.Server

This class is a WebSocket server. It is an EventEmitter.

new ws.Server([options], [callback])

	options Object
	host String

	port Number

	server http.Server

	verifyClient Function

	path String

	noServer Boolean

	disableHixie Boolean

	clientTracking Boolean

	callback Function

Construct a new server object.

Either port or server must be provided, otherwise you might enable noServer if you want to pass the requests directly.

server.close([code], [data])

Close the server and terminate all clients

server.handleUpgrade(request, socket, upgradeHead, callback)

Handles a HTTP Upgrade request. request is an instance of http.ServerRequest, socket is an instance of net.Socket.

When the Upgrade was successfully, the callback will be called with a ws.WebSocket object as parameter.

Event: ‘error’

function (error) { }

If the underlying server emits an error, it will be forwarded here.

Event: ‘headers’

function (headers) { }

Emitted with the object of HTTP headers that are going to be written to the Stream as part of the handshake.

Event: ‘connection’

function (socket) { }

When a new WebSocket connection is established. socket is an object of type ws.WebSocket.

Class: ws.WebSocket

This class represents a WebSocket connection. It is an EventEmitter.

new ws.WebSocket(address, [options])

Instantiating with an address creates a new WebSocket client object. If address is an Array (request, socket, rest), it is instantiated as a Server client (e.g. called from the ws.Server).

websocket.bytesReceived

Received bytes count.

websocket.readyState

Possible states are WebSocket.CONNECTING, WebSocket.OPEN, WebSocket.CLOSING, WebSocket.CLOSED.

websocket.protocolVersion

The WebSocket protocol version used for this connection, 8, 13 or hixie-76 (the latter only for server clients).

websocket.url

The URL of the WebSocket server (only for clients)

websocket.supports

Describes the feature of the used protocol version. E.g. supports.binary is a boolean that describes if the connection supports binary messages.

websocket.close([code], [data])

Gracefully closes the connection, after sending a description message

websocket.pause()

Pause the client stream

websocket.ping([data], [options], [dontFailWhenClosed])

Sends a ping. data is sent, options is an object with members mask and binary. dontFailWhenClosed indicates whether or not to throw if the connection isnt open.

websocket.pong([data], [options], [dontFailWhenClosed])

Sends a pong. data is sent, options is an object with members mask and binary. dontFailWhenClosed indicates whether or not to throw if the connection isnt open.

websocket.resume()

Resume the client stream

websocket.send(data, [options], [callback])

Sends data through the connection. options can be an object with members mask and binary. The optional callback is executed after the send completes.

websocket.stream([options], callback)

Streams data through calls to a user supplied function. options can be an object with members mask and binary. callback is executed on successive ticks of which send is function (data, final).

websocket.terminate()

Immediately shuts down the connection

websocket.onopen

websocket.onerror

websocket.onclose

websocket.onmessage

Emulates the W3C Browser based WebSocket interface using function members.

websocket.addEventListener(method, listener)

Emulates the W3C Browser based WebSocket interface using addEventListener.

Event: ‘error’

function (error) { }

If the client emits an error, this event is emitted (errors from the underlying net.Socket are forwarded here).

Event: ‘close’

function (code, message) { }

Is emitted when the connection is closed. code is defined in the WebSocket specification.

The close event is also emitted when then underlying net.Socket closes the connection (end or close).

Event: ‘message’

function (data, flags) { }

Is emitted when data is received. flags is an object with member binary.

Event: ‘ping’

function (data, flags) { }

Is emitted when a ping is received. flags is an object with member binary.

Event: ‘pong’

function (data, flags) { }

Is emitted when a pong is received. flags is an object with member binary.

Event: ‘open’

function () { }

Emitted when the connection is established.

 active-x-obfuscator

active-x-obfuscator

A module to (safely) obfuscate all occurrences of the string ‘ActiveX’ inside
any JavaScript code.

Why?

Some corporate firewalls /proxies such as Blue Coat block JavaScript files to be
downloaded if they contain the word 'ActiveX'. That of course is very annoying
for libraries such as socket.io [http://socket.io/] that need to use ActiveXObject for
supporting IE8 and older.

Install

npm install active-x-obfuscator

Usage

var activeXObfuscator = require('active-x-obfuscator');
var code = 'foo(new ActiveXObject());';

var obfuscated = activeXObfuscator(code);
// -> foo(new window[(['Active'].concat('Object').join('X'))])

License

Licensed under the MIT license.

 base64id

base64id

Node.js module that generates a base64 id.

Uses crypto.randomBytes when available, falls back to unsafe methods for node.js <= 0.4.

To increase performance, random bytes are buffered to minimize the number of synchronous calls to crypto.randomBytes.

Installation

$ npm install mongoose

Usage

var base64id = require(‘base64id’);

var id = base64id.generateId();

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/down-pressed.png

_static/ajax-loader.gif

